Exam Seat No:_____

C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name: Spectroscopic Techniques

Subject Code: 5SC04C	НС3	Branch: M.Sc. (Chemistry)		
Semester: 4	Date:10/05/2016	Time: 02:30 To 05:30	Marks: 70	

Instructions:

Q-1

Q-2

Q-2

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Attempt the Following questions

SECTION – I

(07)

a.	Write the fundamental NMR equation?	(1)
b.	What is the basic function of Fourier Transform technique in NMR?	(1)
c.	How many signals will we get for 2,2-dichloropropane in ¹ H-NMR spectroscopy?	$(\mathbf{\hat{1}})$
d.	Assign the spin system (pople notation) for p-chloroaniline.	$(\mathbf{\hat{n}})$
e.	Indicate the position of the signals for the solvents CD_3CN and $CDCl_3$ in ¹³ C-NMR.	(1)
f.	Write the important characteristic properties of DEPT-90 and DEPT-135 spectra.	(1)
g.	Which Internal reference is used for samples scanned in D ₂ O?	(1)
	Attempt all questions	(14)
a.	Write a note on chemical shift in NMR spectroscopy.	(5)
b.	Sketch the expected ¹ H- ¹ H COSY spectrum of aromatic region of styrene by	(5)
	taking approximate o value for each signal.	
c.	Calculate ²³ C-NMR shift of m-chloroaniline.	(4)
	OR	
	Attempt all questions	(14)
a.	Calculate ¹³ C-NMR shift for following compound.	(5)

b. What is relaxation process in NMR spectroscopy?

(5)

	c.	How can we differentiate between anomeric structures of D-glucose using PMR	(4)			
03		Attempt all questions	(14)			
Q-3	9	Define the following terms: (i) Auxochrome (ii) Chromophore (iii)				
	a.	Bathochrome (iv) Hypsochrome (v) Hyperchrome and (vi) Hypochrome	(0)			
	b.	Explain the principle of IR spectroscopy.	(5)			
		Calculate λ_{max} for the following compound.	(3)			
			(-)			
		Соон				
0-3		Attempt all questions				
Ϋ́	a.	Write a note on coupled interaction and Fermi resonance in IR spectroscopy.	(6)			
	b.	Discuss different characteristic electronic transitions in UV spectroscopy.	(5)			
	c.	Write different factors affecting theoretical number of bands in IR spectroscopy.	(3)			
		SECTION – II				
Q-4		Attempt the Following questions	(07)			
-	a.	What is the fundamental IR equation?	(1)			
	b.	How many signals will be obtained for ¹³ C-NMR spectra of benzene?	(1)			
	c.	What is the characteristic feature of metastable peak in mass specra?	(1)			
	d.	State Beer-Lambert law.	(1)			
	e.	Why do we get band in IR spectra instead of peak?	(1)			
	f.	What is the basic functionality required for auxochrome groups?	(1)			
	g.	What is E-band?	(1)			
Q-5		Attempt all questions	(14)			
	a.	Explain the general rules for predicting prominent peaks in EI-mass spectra.	(6)			
	b.	Explain the principle of Mass spectroscopy?	(5)			
	c.	What is Mclafferty rearrangement observed in mass spectroscopy?	(3)			
0-5		Attempt all questions				
	a.	Explain different methods for molecular formula determination in mass	(6)			
		spectroscopy.				
	b.	Derive the governing equation of mass spectroscopy.	(5)			
	c.	Discuss CI method in mass spectroscopy.	(3)			
Q-6		Attempt all questions	(14)			
	a.	A compound has molecular formula C ₅ H ₇ NO ₂ .It gives the following spectral	(10)			

analysis. Interpret the spectral data and assign the structure to the compound.

Page 2 || 5

	¹³ C NMR				
δ (ppm)	Multiplicity	No. of protons	δ (ppm)		
4.3	Quartet	2H	14.0		
3.5	Singlet	2H	25.0		
1.3	Triplet	3Н	63.0		
	•		113.0		
IR: (cm-1) 22	163.0				
An organic compounds gave the following molecular ion group peaks in the mass					
spectrum					

(4)

	Μ	M+1
m/z	142	143
Abundance	100	1.14
lecular formula for the	compound?	

What is the molecular formula for the compound?

OR

Q-6 Attempt all Questions

b.

b.

a. A compound has molecular formula $C_{10}H_{12}O_2$. It gives the following spectral analysis. Interpret the spectral data and assign the structure to the compound. (10)

	¹ H NMR			¹³ C NN	/IR
δ (ppm)	Multiplicity	No. of protons	δ (ppm)) DEPT-9	90 DEPT-135
2.1	Singlet	ЗH	29.0		Positive
3.6	Singlet	2H	50.0		Negative
3.8	Singlet	3H	55.0		Positive
6.9	Doublet	2H	114.0	Positive	e Positive
7.1	Doublet	2H	127.0		
			130.0	Positive	e Positive
Mass: (m/ 107, 43	z) 164(M+), 149,	, 133, 121,	159.0		
IR: (cm-1) 1600, 820) 1711, 3000, 295	50, 1500,	207.0		
Determine	the formula of fra	agment from t	he data gi	ven	
	m/z	69	70	71	
	Abundance	100	1.1		

TABLE 5.1

The CShift Paran	ieters in Some Linear and d Hydrocarbons	
¹³ C Atoms	Shift (ppm) (A)	
α	+9.1	
β	+9.4	
γ	-2.5	
δ	+0.3	
£	+0.1	
1° (3°) <i>°</i>	-1.1	
1° (4°)ª	-3.4	
2° (3°) «	-2.5	
2° (4°)	-7.2	
3° (2°)	-3.7	
3° (3°)	-9.5	
4° (1°)	-1.5	
4° (2°)	-8.4	

The notations 1° (3°) and 1° (4°) denote a CH₃ group bound to a R_2CH group and to a R_3C group, respectively. The notation 2° (3°) denotes a RCH₂ group bound to a R_2CH group, and so on.

	Т	ABLE	5.2			
The ¹³ C Shifts for Some Linear and Branched- Chain Alkanes (ppm from TMS)						
Compound		C-1	C-2	C-3	C-4	C-5
Methane		-2.3				
Ethane		5.7				
Propane		15.8	16.3	15.8		
Butane		13.4	25.2	25.2		
Pentane		13.9	22.8	34.7	22.8	13.9
Hexane		14.1	23.1	32.2	32.2	23 1
Heptane		14.1	23.2	32.6	29.7	32.6
Octane		14.2	23.2	32.6	29.9	29.9
Nonane		14.2	23.3	32.6	30.0	30.3
Decane		14.2	23.2	32.6	31.1	30.5
Isobutane		24.5	25.4			
Isopentane		22.2	31.1	32.0	11.7	
Isohexane		22.7	28.0	42.0	20.9	14 3
Neopentane		31.7	28.1			
2,2-Dimethylbutane		29.1	30.6	36.9	8.9	
3-Methylpentane		11.5	29.5	36.9	(18.8.	
					3-CH	5
2,3-Dimethylbutane	2	19.5	34.3			.3/
2,2,3-Trimethylbutane		27.4	33.1	38.3	16.1	
2,3-Dimethylpentane		7.0	25.3	36.3	(14.6	
					3-CH	,)
					- 011	3/

TABLE 5.3							
Incremental Substituent Effects (ppm) on Replacement of H by Y in Alkanes. Y is Terminal or Internal ^e (+ downfield, - upfield)							
$\gamma \qquad \alpha \qquad \gamma \qquad $							
Term	inal		In	ternal			
	a	r	Æ	3	γ		
Y	Terminal	Internal	Terminal	Internal			
CH,	+ 9	+ 6	+10	+ 8	-2		
CH=CH ₂	+20		+ 6		-0.5		
C≡CH	+ 4.5		+ 5.5		-3.5		
COOH	+21	+16	+ 3	+ 2	-2		
COO-	+25	+20	'+ 5	+ 3	-2		
COOR	+20	+17	+ 3	+ 2	-2		
COCI	+33	+28		+ 2			
CONH ₂	+22		+ 2.5		-0.5		
COR	+30	+24	+ 1	+ 1	-2		
CHO	+31	. 17	0		-2		
Phenyl	+23	+1/	+ 9	+ /	-2		
OR	+48	+41	+10	+ 6	-5		
OCOP	+ 51	+31	+ 0 + 6	+ 5	-4		
NH.	+29	+24	+11	+10	-5		
NH ^t	+26	+24	+ 8	+ 6	-5		
NHR	+37	+31	+ 8	+ 6	-4		
NR.	+42	1 51	+ 6	1 0	-3		
NR ⁺	+31		+ 5		-7		
NO.	+63	+ 57	+ 4	+ 4			
CN	+ 4	+ 1	+ 3	+ 3	-3		
SH	+11	+11	+12	+11	-4		
SR	+20		+ 7		-3		
F	+68	+63	+ 9	+ 6	-4		
Cl	+31	+32	+11	+10	-4		
Br	+20	+25	+11	+10	-3		
I	- 6	+ 4	+11	+12	-1		

^aAdd these increments to the shift values of the appropriate carbon atom in Table 5.2 or to the shift value calculated from Table 5.1. *Source:* F.W. Wehrli, A.P. Marchand, and S. Wehrli, *Interpretation of Carbon-13 NMR Spectra.* 2nd ed., London: Heyden, 1983.

Page 4 || 5

		T/	ABLE 5.9		
in commutely open	Siline ວ່າໄປດ້ວຍເຫັນໄດ້ 15 (ກ່າວວ່າກັນໃຈໃຈ) = ນັ້ວນ	ອາເມີສັດ ລີເອັດປະ ເຫ) ອາເຊັດ/ລັດ	AMonoscipstitu m2ol/Substitue	លេខ) ១៩១៩៩៩១១ (ខេត្តស្រួនចំណុខ១ (ខេត្តស្រួនចំណុខ១ (enotions preserved to 2055 nillior former/JS
Substituent	C-1 (Attachment)	C-2	C-3	C-4	C of Substituent (ppm from TMS)
					(-pm 10m 1100)
H	0.0	0.0	0.0	0.0	
CH CH	9.3	+0.7	-0.1	-2.9	21.3
CH(CH_)	+20.1	-2.0	0.0	-2.0	$29.2 (CH_2), 15.8 (CH_3)$
C(CH.)	+22.2	-3.4	-0.4	-3.1	34.5 (C) 31 A (CH)
CH=CH.	+9.1	-2.4	+0.2	-0.5	137.1 (CH), 113.3 (CH.)
C=CH	-5.8	+6.9	+0.1	+0.4	84.0 (C), 77.8 (CH)
C ₆ H ₅	+12.1	-1.8	-0.1	-1.6	
CH ₂ OH	+13.3	-0.8	-0.6	-0.4	64.5
сн₂оссн,	+7.7	~0.0	~0.0	~0.0	20.7 (CH ₃), 66.1 (CH ₂), 170.5 (C=O)
OH	+26.6	-12.7	+1:6	-7.3	
OCH,	+31.4	-14.4	+1.0	-7.7	54.1
OC.H.	+29.0	-9.4	+1.6	-5.3	2
Q					
оссн, о	+22.4	-7.1	-0.4	-3.2	23.9 (CH ₃), 169.7 (C=O)
CH O	+8.2	+1.2	+0.6	+5.8	192.0
Y					
ĊСН, o	+7.8	-0.4	-0.4	+2.8	24.6 (CH ₃), 195.7 (C=O)
CC.H.	+9.1	+1.5	-0.2	+3.8	196.4 (C=0)
CCF, Q	-5.6	+1.8	+0.7	+6.7	
Сон	+2.9	+1.3	+0.4	+4.3	168.0
сосн, о	+2.0	+1.2	-0.1	+4.8	51.0 (CH3), 166.8 (C=O) 168.5
ĊCI	+4.6	+29	+0.6	+70	
C=N	-16.0	+3.6	+0.6	+43	119.5
NH ₂	+19.2	-12.4	+1.3	-9.5	117.5
N(CH ₃) ₂ O	+22.4	-15.7	+0.8	-11.8	40.3
NHCCH.	+11.1	_0.0	+0.2		
NO ₂	+19.6	-5.3	+0.2	-5.0	
N=C=O	+5.7	-3.6	+1.2	-28	120 5
F	+35.1	-14.3	+0.9	-4.5	129.5
CI	+6.4	+0.2	+1.0	-2.0	
Br	-5.4	+3.4	+2.2	-1.0	
I	-32.2	+9.9	+2.6	-7.3	
CF,	+2.6	-3.1	+0.4	+3.4	
SH	+2.3	+0.6	+0.2	-3.3	
SCH3	+10.2	-1.8	+0.4	-3.6	15.9
Si(CH ₃) ₃	+13.4	-2.9	+0.4	+3.3	

"See D. E. Ewing, Org. Magn. Reson., 12, 499 (1979) for chemical shifts of 709 monosubstituted benzenes.

Page 5 || 5

